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Abstract

Generic features of energy and energy flow in thin rods and beams are investigated. Full equations of
energy density and energy flow are formulated in terms of wave amplitudes. The differential equations for
energy and energy flow are also formulated which are similar but not identical to some found earlier. The
relationship between the power input and global kinetic and potential energies has been applied to rods and
beams which gives easy access to their global energy. The present study is focused on semi-infinite rods and
beams, and in particular, at the distribution of kinetic and potential energies within the section between the
excitation and the end positions. A study of a finite beam system is presented in a companion paper.

Both force and moment-type excitations are considered. It is shown that long finite beams closely match
equivalent semi-infinite beams, where frequency band-averaged energy characteristics are concerned.
Similar equivalence with infinite beams was found not to hold. It is further demonstrated that, unlike the
kinetic energy density, the potential energy density exhibits a jump at the excitation point of a rod or a
moment-driven beam. The damping was shown to reduce the jump in potential energy across the excitation
point, but in turn increases the frequency range of strong power input to the end section.
r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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G. Pavić / Journal of Sound and Vibration 291 (2006) 932–962 933
1. Introduction

One-dimensional vibration objects such as axially vibrating rods and flexurally vibrating beams
have been investigated thoroughly in the past. Some of these investigations were related to energy
of these simple structures with two principal objectives in mind: (1) measurement of energy flow
for the purpose of vibration path identification and ranking and (2) simplified modelling of energy
density and energy flow with the aim of improving prediction of vibration levels at medium and
high frequencies.
Following an early study of energy flow in beams and plates [1], several energy flow

measurement methods emerged using either a finite-difference formulation [2–4], or a wave
separation technique [5–7]. These investigations focused on a single type of vibration, mainly
flexural vibration. Techniques of simultaneous measurement of several types of waves in beams
were also examined, e.g. in Refs. [8,9]. It has been clearly shown that energy flow measurement
techniques are intrinsically delicate and susceptible to errors. A particular difficulty related to
flexural vibration was found to be the presence of a near-field which had either to be disregarded,
at the cost of losing access to lower frequencies as well as regions close to discontinuities, or to be
taken into account at the price of enormous loss of accuracy. Improvements of different sorts
were attempted in this respect, e.g. by using hybrid formulations [10], or hybrid transducer
configurations [11], but the practical problems associated with the exact positioning and
amplitude-phase matching of transducers remained a major obstacle. Some notable attempts to
further improve the measurements were done on the side of signal processing [12,13], showing
some promising perspectives. Nevertheless, measurement of energy flow in a beam in all but well-
controlled laboratory conditions is still impractical. Researchers are thus left for the time being
without a potentially powerful tool which can be used not only for identification purposes but also
in vibration control work [14].
Investigations into the methods of prediction of vibration of rods and beams were carried out in

parallel with the development of measurement methods. Taken on its own, a thin rod or a
Bernoulli–Euler beam is a simple enough object to be readily computed using analytical methods.
Where assemblies of beams are concerned the analytical approach becomes too demanding while
the numerical techniques such as FEM remain limited in frequency. This explains the interest in
simple prediction methods which, like Statistical Energy Analysis (SEA), apply local space
averaging to achieve simplicity but which, contrary to SEA, can provide some insight about how
the vibrations are distributed within each subsystem, i.e. each beam.
First studies on high-frequency modelling of beams appeared in the seventies [15,16]. It has

been found that the smoothed energy distribution could be represented by equations analogous to
that of heat conduction. The theoretical formulations developed were implemented numerically
using finite element technique [17,18]. A more detailed analysis of rods and beams has revealed
that while the energy in rods does behave in accordance with heat transfer analogy the same does
not apply to beams unless further local spatial averaging is applied [19].
In Ref. [20] Carcaterra and Sestieri have shown that the heat transfer analogy does not apply in

the general case to vibrating mechanical systems. Lase et al. have developed an exact differential
representation of energy distribution in rods and beams [21]. In the case of rods one pair of
differential equations are obtained, one for total energy density and one for Lagrangian density.
In the case of beams four pairs of such energy equations are needed: one pair for propagating
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waves, one pair for evanescent waves and two pairs for describing the interactions between the
two types of waves. The general energy formulation of Lase et al. [21] explicitly expresses
the energy density in terms of smooth and oscillating components. Le Bot has concentrated on the
smoothly varying part by simplifying the cumbersome general expressions [22]. A major problem
of these techniques represents the specification of energy and energy flow connectivity conditions
at the subsystem interfaces and across joints. Cho et al. have used superposition of incident and
scattered energy densities at the discontinuity to enforce connectivity [23]. Still, the lack of simple
energy connectivity laws remains a major obstacle to the use of smooth formulations.
Novel hybrid prediction methods have been recently considered to bridge the limitations of

classical numerical techniques limited to lower structural modes and statistical techniques
suffering from poor spatial resolution. These methods are potentially suitable for modelling of
structures which involve rods and beams. In Ref. [24] Soize has proposed a technique which treats
an assembled system as being composed of a master structure, dictating the overall response, and
a number of attached subsystems with uncertain (fuzzy) properties. Another formulation having
some resemblance to Ref. [24] was developed by Langley and Bremner, where the dynamic
movements of an assembly are split into a global and a local set of degrees of freedom [25]. The
two sets are then treated in different ways: the global set deterministically and the local set by
some statistical or smooth formulation, like SEA. Yet another approach was proposed by Mace
and Shorter [26] which also uses splitting the system into global and local subsystems, both of
which are treated by FE techniques. Frequency averaging is applied. The advantage of the
approach in Ref. [26] is that it can handle systems up to higher frequencies than classical FE with
improved numerical efficiency arising from appropriate mathematical manipulations of the
governing equations.
The objective of this paper is to provide an account of physical aspects of energy and energy

flow distribution in rods and beams and in particular of the role damping plays on these
quantities. With this objective in mind, the investigation will be carried out using simple analytical
models of rods and beams, both infinite and semi-infinite. Finite structures are more difficult to
analyse in a generic sense; an analysis focused on a particular finite system is done in a companion
paper [27].
Any infinite or semi-infinite structure is of course only a theoretical concept. Nevertheless, a

large real structure excited far from its boundaries if sufficiently damped will have averaged
properties similar to those of an equivalent infinite one. Likewise, a large damped real structure
excited close to one boundary will have averaged properties similar to those of an equivalent semi-
infinite one. In fact a semi-infinite rod/beam driven in the vicinity of its end is a suitable example
for studying some fundamental effects of damping on vibration energy propagation as, unlike an
infinite or a finite structure, it shows effects of amplification by both wave interference and steady
decay. The relevance of semi-infinite structures for vibration analysis was demonstrated by Liang
and Petersson in Ref. [28]. They have found that a quantity called motion transmissibility, shown
to be useful in analysing a finite structure, could be obtained by considering an equivalent semi-
infinite structure. The energy equivalence of semi-infinite and finite structures will be
demonstrated at the end of this paper.
Three physical quantities will be considered: kinetic and potential energies and energy flow

(called sometimes power flow). The energies will be considered either locally as energy density, i.e.
energy per unit length, or globally. Some attention will be paid to the distribution of potential
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energy density since this quantity, shown to be directly related to local energy losses, can serve as
an indicator of the locations of high damping effect and thus could be used in vibration control
optimisation.
Yet another quantity becomes relevant for energy analysis, the energy flow divergence. The flow

divergence has been found to be proportional to potential energy density [29]. It is therefore
unnecessary to consider both the potential density and the flow divergence. The choice between
the two will be made in dependence of the nature of the analysis.
2. Energy and energy flow in a continous system

This section recalls some basic relationships between the local and global distribution of energy
and energy flow of a vibrating system in the presence of structural damping. The system
considered is supposed linear. Sinusoidal time variations with frequency o are assumed which
allows taking all the time variables as complex quantities. Only the time-averaged values of energy
and energy flow (intensity) are investigated.
Both energy and energy flow are linear combinations of products of stresses, strains and

velocities. It is well known that the time-averaged product of two harmonically varying quantities
u1 and u2, represented in complex form, is numerically equal to the real part of the product of their
complex amplitudes U1 and U2

u1 tð Þu2 tð Þ¼̂
1

2
Re U1U

�
2

� �
,

where overbar denotes time average, asterisk denotes complex conjugate and Re denotes real part.
Once the complex product U1U

�
2 is available, it becomes useful to employ not only its real part

but its imaginary part as well in spite of the physical meaning of the latter being usually obscure.
The time-averaged product can then be taken as complex. In the rest of the paper the time-
averaged energy flow (power) will be considered to be a complex quantity, while the energy will be
considered as a purely real quantity.
The divergence of the complex intensity vector I within an elastic structure has been shown to

depend on energy density e and loss factor Z in the following way [29]:

r � Ī ¼ Reðr � ĪÞ þ j Imðr � ĪÞ ¼ 2o ðj� ZÞēp � jēk

� �
, (1)

where ek and ep denote the kinetic and potential energy densities, respectively, i.e. the energy per
unit volume while the symbol Im denotes the imaginary part. Eq. (1), used in a somewhat
modified form in Ref. [22], applies not only to one-dimensional structures, but to arbitrary linear
systems with structural damping [29]. The integral representation of Eq. (1) then is given in terms
of total system energy and input power [29]

Pin ¼ 2o jEk þ ðZ� jÞEp

� �
. (1a)

Eqs. (1) and (2) hold strictly at all frequencies. The only restriction is the assumption on the loss
factor which has to be constant throughout the body if Eq. (2) is to stay valid. Eq. (1) shows that
the net divergence of energy flow in a steady state of vibration is proportional to the potential
energy.
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3. Energy and power distribution in rods

3.1. Basic relationships

A straight rod vibrating in the axial direction is perhaps the simplest continuous system to
analyse. Yet it will be shown that the laws governing energy and its flow are far from being very
simple.
The rod is supposed to vibrate in a longitudinal direction such that the distribution of strains

over the cross-section is uniform. The usual form of solution in the case of harmonic motion of a
lossless rod of elasticity modulus E and mass density r given in terms of axial displacement u reads

uðx; tÞ ¼ UðxÞejot; U ¼ Aþe
�jkx þ A�e

jkx. (2)

Here A ¼ |A|ejj denotes complex amplitudes of oppositely propagating longitudinal waves while
o denotes angular frequency. In the absence of damping the wavenumber k becomes a real
quantity

k ¼ o=c; c ¼
ffiffiffiffiffiffiffiffiffi
E=r

p
(3)

c representing propagation velocity. In such a case the energy flow through the rod per unit cross-
sectional area, the intensity, becomes proportional to the difference in the amplitude squares of
the two waves

I ¼
1

2

ffiffiffiffiffiffiffi
Er

p
o2 Aj j2þ � Aj j2�
� �

. (4)

An equation of type (4) represents a basic expression for intensity in vibration and acoustics where
non-dispersive undamped plane waves are concerned. By neglecting the, often unimportant,
evanescent wave field, an analogous expression becomes valid for the case of undamped flexural
waves. The energy flows of the two wave types add algebraically, wave interference does not take
place. However, the presence of damping will modify the nature of this simple expression,
Appendix A.
The basic energy expressions are given by Eqs. (A.2)–(A.9). While the kinetic and potential

energy densities vary considerably along the rod, the total energy varies slowly in an exponential
fashion. The net energy flow also varies slowly, but the imaginary part of the flow, just like the
kinetic and potential energies, oscillates at the rate of two periods per wavelength. The equation of
total energy density given in terms of wave amplitudes (A.4) yields the following differential
equation for energy [21]:

q2E0

qx2
� ðZkÞ2E0 ¼ 0, (5)

which is universally valid, i.e. at all positions and frequencies. Such an equation, already found by
Wohlever and Bernhard in Ref. [19] and termed ‘‘approximate’’, uses an approximate equation
of energy flow free from an interference term. This nevertheless produced the exact solution
for E0 since total energy density, contrary to energy flow, is interference free. If subjected to
appropriate boundary conditions (5) will produce an exact result for energy distribution in an
axially vibrating rod.
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To outline the nature of energy distribution in rods, the rod will be assumed to be free at the
end x ¼ 0. This condition implies zero potential energy and zero net energy flow which in turn will
yield the following laws of energy distribution:

E0k / coshðZkxÞ þ cosð2kxÞ; E0p / coshðZkxÞ � cosð2kxÞ,

P / � ð1þ jZ=2Þ sinhðZkxÞ þ j sinð2kxÞ½ �,

rðPÞ / � ð1þ jZ=2Þ Z coshðZkxÞ þ 2j cosð2kxÞ½ �.

Fig. 1 shows the normalised energy distribution in a rod having a free end at x ¼ 0, represented
by the equations above. The loss factor is set to 0.1 to emphasise spatial variations. Rapid changes
of kinetic and potential energy strictly cancel out to give a smooth change of total energy. An
identical distribution can be obtained for another classical conservative end condition, rigid
clamping, if the plots of kinetic and potential energies are interchanged.
While the variation of net energy flow is monotonic, as expected, it is not smooth: the net

energy flow is staircase shaped: descents and ‘‘plateaus’’ appear in succession along the rod. This
type of distribution is typical of damped waveguides: similar patterns will be found later in beams.
On the contrary all the energy-related quantities in an infinite damped rod decrease smoothly.

3.2. Infinite rod

Prior to any further analysis it is helpful to find the solution for a rod extending to infinity at
both sides of the excitation point. The solution for an infinite rod is available in textbooks for
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damping-free conditions. The damped solution is readily obtained from Eq. (2) by imposing at the
excitation point, taken here at x ¼ 0, the condition �SE qu=qx ¼ F 2= , where F is the complex
excitation force

uðxÞ ¼ A0e
�jk xj j; A0 ¼

F

2jm0co
. (6)

The presence of damping is taken into account by making the Young’s modulus E—and
thus the velocity c—complex. The power in the rod is easily obtained from Eq. (A.5) by setting
A� to zero

P ¼
1

2
m0c o2ð1þ jZ=2Þ A2

þ

�� ��e�Zk xj j

¼ signðxÞ
F2
�� ��
8m0c
ð1þ jZ=2Þe�Zk xj j. ð7Þ

The sign(x) results from interchanging A+ and A� for xo0, resulting from the anti-symmetry of
the displacement gradient field corresponding to the internal force. The input power is

Pin ¼ 2P
��
x¼0
¼

F2
�� ��
4m0c
ð1þ jZ=2Þ. (7a)

With the known complex input power the global values of kinetic and potential energies can be
easily found using the integral formula (1a). It turns out that the two energies are equal within the
margins of Z2.
At this point a suitable normalisation value of energy density will be introduced. As the mean

energy density in an infinite rod is zero, an appropriate density reference value can be obtained by
considering the section of the rod around the excitation point which contains one half of the
global energy. This section can be easily identified using the integral relationship (1a): it turns out
that the net power leaving this section has to be equal to half the net input power (7), (7a). The
distance from the excitation point D at which the input power entering one side of the rod drops to
half its value can be found from the condition expð�ZkDÞ ¼ 1

2
, i.e. D ¼ lnð2Þ=Zk. Twice this

distance (both sides of the rod) contains one-half of the global energy, the latter being equal to
E � Re Pin

� �	
Zo, (1a). Thus

erod ¼
Re Pin

� �
4 lnð2Þc

(8)

can be considered as a characteristic energy density of a rod. In what follows this value will be
used to represent the energy density in a normalised non-dimensional way.

3.3. Semi-infinite rod

The present analysis will be now focused on to a semi-infinite rod excited near its end.
In a semi-infinite rod two vibration waves will coexist in the section between the rod end and the

excitation point. These waves move in opposite directions which causes rapidly varying
destructive or constructive interference in dependence of the wavelength. In the part of the rod
extending to infinity the wave directly excited by the source and the wave reflected from the
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boundary merge into a single wave which moves away from the excitation point. The amplitude of
this resulting wave decreases slowly as there is no opposite wave to create interference. If a rod is
dissipation free and moreover with conservative boundary conditions, standing waves will
develop within the end section at wavelengths equal to integer fractions of the excitation-end
distance. Under the same conditions the outgoing wave will fully disappear reducing the net
power input to zero. Thus, the presence of internal damping will affect not only the vibration
levels, but also the nature of wave propagation.
The rod end will be taken to be clamped. The response will be found by a superposition based

on the solution for an infinite rod (Eq. (6)). For the sake of simplicity the clamped end is placed at
x ¼ 0 while the excitation force is placed at x ¼ d. A secondary force of equal magnitude and
opposite phase to the primary excitation force will be applied to the infinite rod at the mirror
position with respect to the rod end, i.e. at x ¼ �d. This force, acting simultaneously with the
primary force, will cancel rod motion at x ¼ 0 due to the symmetry of infinite rod displacement
field which fully corresponds to the required semi-infinite boundary condition.
At the origin of the infinite rod, driven by the primary force and its mirror image counterpart,

the amplitudes of the two vibration waves generated by these two forces, A� and A+, respectively,
will be equal in magnitude but of opposite sign:Aþ ¼ �A� ¼ �A0e

�jkd . When substituted into
Eq. (A.5), the last relationship yields the value of the net input power of a semi-infinite rod. This
value can be further used to evaluate the global kinetic and potential energies using Eq. (1a).
Fig. 2 shows the global energy properties of a semi-infinite rod. The abscissa scale is normalised

in the form of the product kd. The plot (a) shows the normalised net input power, i.e. the actual
net input power divided by the net input power of an equivalent infinite rod. This plot will remain
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Fig. 2. Energy properties of a clamped semi-infinite rod in dependence of the wavenumber k and the distance between

the excitation position and the clamped end d: (a) normalised values of net input power; thick line: at the input, thin

line: transmitted to the infinite part, dashed line: transmitted to the clamped section and (b) Lagrangian coefficient; loss
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unchanged if the potential energy is shown, as implied by Eq. (1a). The plot of kinetic energy will
be practically the same as the difference between the kinetic and potential energies, the
Lagrangian energy, is small. The ratio of Lagrangian energy and the total rod energy, named the
Lagrangian coefficient, is shown on the plot (b) at three values of loss factor: 0.1%, 1% and 10%.
The input power and thus the global energy vary a lot with the wavenumber (frequency). It can

be shown that the higher the damping the smaller the variations; with kd increasing the result
converges to that of an infinite rod as expected. At kd ¼ np, n integer, the rod energy is at a
minimum and is transferred essentially to the clamped section as seen by the dashed line. The
envelope values of input power are 1� e�Zkd which is easily found from Eq. (A.6). It follows that
at low frequencies the input power to the clamped semi-infinite rod can almost double that of an
infinite rod. The low values of Lagrangian coefficient at all, but very low frequencies indicate
equal sharing of total energy between potential and kinetic energies. At extremely low frequencies
the (clamped) rod is deformed at practically no motion, thus the potential energy prevails.
One can notice that, contrary to the case of finite systems, the energy and power input do not

show peaks which are characteristic of resonances, but show instead dips at certain values of kd.
These values are np, where n is an integer. It can be readily shown that these values represent anti-
resonances of the driving point located at the free end of a clamped–free finite rod. As the
impedance of the infinite rod section is a smooth function of frequency, the anti-resonances of the
whole semi-infinite clamped rod will coincide with those of such a finite rod. At an anti-resonance
frequency of the driving point the work provided by the external excitation is almost entirely
delivered to the clamped section the impedance of which is much higher than that of the infinite
section at this frequency. The energy is trapped in the clamped section with very little energy
leaking to the infinite section. This effect will occur no matter what is the boundary condition
providing it is a conservative one: in such a case there will always be anti-resonances at some
frequencies.
The impedance of the driving point can never be very low since the resistance (the real part of

the impedance) of the infinite section is not negligible, which means that resonances cannot
develop in semi-infinite waveguides. Damping thus affects little the input power except in
frequency bands where the major part of the input power enters the clamped section. In an elastic
system damping becomes effective when the inertial forces compensate the elastic forces, which
occurs at resonance. The energy of an infinite rod or an infinite beam is in fact also affected by
damping: vibration of a damped infinite rod decays with the distance from excitation while it does
not decay if the damping is zero. However, in view of the absence of resonances, i.e. reflected
waves, it does not matter much how rapid the spatial decay is, i.e. how large is the damping,
provided it is not very high. In a semi-infinite rod the damping will not affect the net input power
if the main energy flow is towards the infinite section, but will matter once the flow goes mainly to
the finite section.
With the values of wave amplitudes identified, the energy density and intensity can be evaluated

from Eqs. (A.2)–(A.5). Fig. 3 shows these quantities in the form of a tone map in dependence of
frequency (wavenumber) and observation position x. Representation of a function of two
variables—position along the rod (abscissa) and wavenumber (ordinate)—by a tone map is done
here for the sake of giving an easy perception of the overall behaviour of the given function which
depends on two parameters. Such a condensed representation will be again used in the next
section dealing with beams. Both abscissa and ordinate scales are normalised in such a way to
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make the results universally applicable to any value of excitation position d. The abscissa is
represented in a non-dimensional form, by the ratio of the observation position and the end-
excitation distance x/d. The end thus corresponds to 0 while the excitation point corresponds to 1.
The ordinate is non-dimensional too, given in Helmholtz units.
Each map is normalised by dividing the actual values of energy density by the characteristic

density (Eq. (8)). The role of normalisation is not merely to make the results non-dimensional but
rather to enable a better insight into the nature of energy distribution. The present study concerns
the energy distribution within the system analysed, thus it appears that the most meaningful way
of normalising the actual energy densities should go via some reference density, like that of an
infinite rod. Such a normalisation gives unique results for any combination of the two non-
dimensional entry parameters.
Regretfully the structure damping cannot be normalised in a suitable way. The damping affects

the two wavenumbers of energy distribution in a non-proportional way (one wavenumber is
greatly affected, the other is not). The damping should thus be considered as an independent input
parameter.
It can be seen that strong variations of energy variables occur only at the positions between the

rod end and the excitation point, i.e. between 0 and 1. The kinetic (a) and potential (b) energy
densities in this region are seen to be different but complementary. The difference is strong near
the excitation point and the clamped end, fading away toward the interior of this section. The
complementary feature of the two energies can be shown by the sum of the two: at a given
frequency, the total energy density in the clamped section is constant. The same feature will be
displayed by any one-dimensional dispersion-free field, such as the sound field in a tube below the
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first cut on. On the contrary, a beam vibrating in flexure has a very uneven distribution of total
energy density as shown in Section 4.
Fig. 3 shows yet one characteristic feature which applies to both rods and beams: at the two

sides of the excitation point the potential energy densities could be very different from each other.
In the general case there will always be a jump, either positive or negative, in potential energy
density across the excitation point at each frequency. The jump, caused by a jump in internal
stresses which are responsible for potential energy in a rod, is due to the external force being
unevenly split on two adjacent faces of the cross-section. It will occur whenever the rod is not
symmetric with respect to the excitation point. The jump can never occur in the kinetic energy
density as this quantity, being governed by the rod velocity, is a continuous function of space. It
can be shown that the jump effect is preserved when the boundary condition is changed. This
feature can be of importance when deciding on the placement of damping in structures: it should
be always placed at positions of higher potential energy.
4. Energy and power distribution in beams

4.1. Basic relationships

In the case of a straight beam vibrating in flexure, the two travelling waves of complex
amplitudes A+ and A� are accompanied by two evanescent ones of complex amplitudes C+

and C�

U x; tð Þ ¼ Aþe
�jkx þ A�e

jkx þ Cþe
�kx þ C�e

kx
� �

ejot,

k ¼ m0=B
� �1=4 ffiffiffiffi

o
p

, ð9Þ

where B and m denote flexural stiffness and unit-length mass while C ¼ jCjejc denotes the
complex amplitude of an evanescent wave. If the damping is zero, the net active energy flow
expressed in terms of wave amplitudes reads [2]

ReðPÞ ¼
m0o

k
A2
þ

�� ��� A2
�

�� ��� Cþ
�� �� C�j j sinðcþ � c�Þ

� �
, (10)

i.e. it involves the evanescent waves too, even though each of these waves does not carry power on
its own when taken individually.
The damping can now be included by making the flexural stiffness complex

B! Bð1þ jZÞ ) k! k=ð1þ jZÞ1=4 � kð1� jZ=4Þ. (11)

With the damping included, the expression for energies, energy flow and its divergence become
exceedingly complicated. These are given in Appendix B explicitly in terms of wave ampli-
tudes just like in the case of rods in Section 3. These contain 10 different products of wave
amplitudes as already shown in Refs. [21,22] and, unlike Eq. (10), depend on the observation
point x

Ek;Ep;P; divðPÞ ¼ f x; A2
þ

�� ��; A2
�

�� ��; C2
þ

�� ��; C2
�

�� ��;AþA��;CþC��
�

,

AþC�þ;AþC��;A�C�þ;A�C��
�
.
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To illustrate the complexity of energy propagation in a damped beam consider the case of a
single flexural wave impinging a non-conservative boundary, such as a dissipative joint. In the
general case such a wave will produce two reflected waves, one propagating and one evanescent.
If the beam is lossless, Eq. (10) applies. When the incoming wave is a propagating one, the
energy flow will be governed by the difference of the incoming and reflected propagating wave
amplitude squares, just like in the case of air-borne sound waves. In this case the reflected
evanescent wave will not participate in energy transport. If the incoming wave is an evanescent
one, the net flow will still exist contributed to by both the evanescent waves and by the reflected
propagating wave. However, if the beam possesses some internal dissipation the simple equation
(Eq. (10)), is no longer valid. In such a case any wave arriving at a non-conservative boundary
will produce energy flow which will be contributed by all the inbound and outbound waves,
(Eqs. (B.3), (B.3a)).
Practical implementation of simple models of beam vibration favours use of an energy

differential equation which, subjected to appropriate boundary conditions, would provide the
solution for energy distribution within the beam. In Ref. [19] the authors have used an
approximate second-order equation, analogous to the rod equation (5). This equation disregarded
not only the evanescent wave contribution, which made it inapplicable to near-field conditions,
but also the coupling between propagating waves which is responsible for the oscillatory
component of energy. As a result, an approximation of beam energy density was obtained, such
that energy oscillations were smoothened out.
The energy and energy flow divergence in the beam are governed by Gr and Gi terms,

(Eq. (B.4a)), the first representing the propagating and evanescent fields separately, the second
representing their interference. Each of the two can be put in a differential form (Z2 neglected in
comparison with unity except in the expression for Gi, where it matters for the balance of the sum
of all terms)

q8Gr

qx8
� 16k4 q

4Gr

qx4
þ Z4k8Gr ¼ 0;

q8Gi

qx8
þ 8k4 q

4Gi

qx4
þ 16 1�

Z2

4


 �
k8Gi ¼ 0. (12)

Each differential equation yields 4 pairs of roots. The energy flow is governed by S+ and S� terms
which obey differential equations of the same form as Eq. (12). Thus kinetic energy, potential
energy, energy flow and energy flow divergence can all be represented by 2 terms or alternatively
by 8 simple terms as shown in Ref. [21]. However, the total energy is proportional only to the Gr

term, i.e. free from interference between dissimilar wave types. It can be thus expressed by a single
differential equation of eighth order, the same as the Lagrangian energy which is proportional to
the Gi term only. As the energy flow cannot be reduced to the same order, it is not possible to
establish a straightforward link between the energy flow and total energy density. The complete
energy density equation will be consequently of little practical use. It should be pointed out that
Le Bot has obtained for the total and Lagrangian energy a system of two coupled differential
equations of eighth order which stands in some contrast to the result (12) where the two are
uncoupled.
By neglecting the evanescent terms C+ and C� in the energy equation (B.6), an approximate

differential-averaged energy equation can be reached. The energy variation is governed by one
harmonic term at the rate 2kx and two oppositely decaying terms at the rate Zkx/2 which results in
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a fourth-order differential energy equation

q4E0

qx4
þ 4k2

ð1�
Z2

16
Þ
q2E0

qx2
� Z2k4E0 ¼ 0. (13)

This equation now contains only 4 unknowns and thus requires 4 boundary conditions. It will well
describe the spatial variations of total energy at all positions except near the beam ends where the
influence of the near-field could be strong. This will inevitably make Eq. (13) unsuitable for
modelling of built up systems which relies heavily on the accuracy of representation of boundary
conditions.
Fig. 4 shows the distribution of total energy near a free end of a beam, x ¼ 0. The thick curve

shows the exact value (Eq. (B.6)), the thin curve shows the approximate value obtained by
neglecting the near-field (Eq. (13)), while the dotted curve represents the simplification used in
Ref. [19]. It can be seen that the approximation (13) is globally quite satisfactory. Of course this
approximation cannot be applied in the computation of beam assemblies by energy equations but
can be employed for the experimental analysis of far-field regions.

4.2. Infinite beam

A simple academic case of an infinite beam will be briefly analysed as an introduction to a more
general analysis. Moreover, the results of this section will be employed in the following section to
analyse the response of a semi-infinite beam. It will be shown that, even in the exceptionally simple
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G. Pavić / Journal of Sound and Vibration 291 (2006) 932–962 945
case of an infinite beam excited at a single point, the energy distribution along the beam as well as
energy flow through it varies spatially in a way which is not self-evident. In particular, the rate of
absorption of vibration energy away from the driving point does not decrease steadily. The case of
an infinite beam has been treated in textbooks such as Ref. [30], but by neglecting damping which
explains the present introduction.
Both force and moment excitation will be considered. The latter, often neglected in analysis,

was shown to be of the same significance as the former [31]. In particular, the importance of power
injection by moment excitation with rising frequency has been clearly demonstrated.
The beam is extended to infinity at both sides from the excitation position taken at x ¼ 0. In

such a case the vibration displacement field is either symmetric (force excitation) or asymmetric
(moment excitation). At each side of the excitation point only two waves exist, one propagating
and one decaying. For x40, these two waves have complex amplitudes A+ and C+ using the
notation of Eq. (9). The boundary conditions applied to sinusoidal vibrations yield the following
values of wave amplitudes in the part x40:

force excitation : Aþ ¼
F

4jBk3
; Cþ ¼ �jAþ,

moment excitation : Aþ ¼
M

4Bk2
; Cþ ¼ �Aþ ð14Þ

with F, M, B and k complex. The complex power input to an infinite beam can be easily evaluated
from the last expressions neglecting the higher powers in Z

force excitation : Pin ¼
ð1� Z=4Þ þ jð1þ Z=4Þ

8k
ffiffiffiffiffiffiffiffiffi
Bm0
p F2

�� ��,
moment excitation : Pin ¼

ð1þ 3Z=4Þ � jð1� 3Z=4Þ

8
ffiffiffiffiffiffiffiffiffi
Bm0
p k M2

�� ��. ð15Þ

The power input to an infinite beam is thus almost unaffected by damping providing the loss
factor stays well below unity. This result will be generally valid for any infinite structure. It is
useful to recall that the net input power to a finite structure, if averaged over a frequency band
covering several resonances, should also be independent of structural damping [30], but at each
particular frequency the dependence on damping is strong.
The relationship between the global energy and the excitation of the beam can be readily

obtained using the integral relationship between the energy and energy flow (Eq. (1a)), as well as
Eq. (15)

force excitation : Ep �
1

Z
�

1

4


 �
F2
�� ��

16
ffiffiffiffiffiffiffiffiffi
Bm0
p

ko
; Ek �

1

Z
þ

3

4


 �
F2
�� ��

16
ffiffiffiffiffiffiffiffiffi
Bm0
p

ko
,

moment excitation : Ep �
1

Z
þ

3

4


 �
k M2
�� ��

16
ffiffiffiffiffiffiffiffiffi
Bm0
p

o
; Ek �

1

Z
þ
7

4


 �
k M2
�� ��

16
ffiffiffiffiffiffiffiffiffi
Bm0
p

o
. ð16Þ

The total kinetic and potential energies of an infinite beam are almost identical. For a given
excitation level, the total energy in a force-driven beam will decrease with frequency by 4.5 dB/
octave while the decrease in a moment-driven beam will be much slower, 1.5 dB/octave.
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The complex energy flow through the beam at an arbitrary position x in this case reads,
(Eqs. (B.3), (15)):

force excitation :

P ¼
F2
�� ��=k

16
ffiffiffiffiffiffiffiffiffi
Bm0
p 1þ j

Z
2

� 
e�Zk xj j=2 þ

Z
4
e�2k xj j

n

þ j
ffiffiffi
2
p

1�
Z
4

� 
e�kð1þZ=4Þ xj j cos

p
4
� kð1þ Z=4Þ xj j

h io
, ð17aÞ

moment excitation :

P ¼
M2
�� ��k
16

ffiffiffiffiffiffiffiffiffi
Bm0
p 1þ j

Z
2

� 
e�Zk xj j=2 þ

Z
4
e�2k xj j

n

þ j
ffiffiffi
2
p

1�
Z
4

� 
e�kð1þZ=4Þ xj j cos

p
4
þ kð1þ Z=4Þ xj j

h io
. ð17bÞ

Note that the x-coordinate appears as an absolute value due to symmetry. An expression for the
net energy flow under force excitation, obtained earlier by Goyder and White in Ref. [32], fully
matches the real part of Eq. (17a). The divergence of energy flow follows from Eqs. (B.4) and (15)

force excitation :

divðPÞ ¼ �
F2
�� ��

32
ffiffiffiffiffiffiffiffiffi
Bm0
p 1þ j

Z
2

�  Z
2

e�Zk xj j=2 þ e�2k xj j
h in

þ 2je�kð1þZ=4Þ xj j sin kð1þ Z=4Þ xj j
� �o

, ð18aÞ

moment excitation :

divðPÞ ¼ �
o M2
�� ��
32B

1þ j
Z
2

�  Z
2

e�Zk xj j=2 þ e�2k xj j
h in

� 2je�kð1þZ=4Þ xj j cos kð1þ Z=4Þ xj j
� �o

. ð18bÞ

Both the energy flow and its divergence are composed of one slowly decaying part (the first term
in brackets of Eqs. (17) and (18)), one rapidly decaying part (second term) and a harmonically
oscillating part which at the same time rapidly decays (third term). The maximum is always at the
excitation position, x ¼ 0. The rapidly decaying part of the net energy flow can be neglected, being
weighted by the loss factor. As far as the flow divergence is concerned the same term plays as
important a role close to the source as the slowly decaying term.
By analysing Eq. (18) it can be found that the divergence under a force excitation will rapidly

drop to � 1
4
of its maximum value at kx � 1, only to slightly increase with increasing distance

before definitely decaying towards infinity. The divergence due to moment excitation will decrease
less rapidly to its first minimum value located at kx � 2:4 equal to � 1

5
of its maximum value. In

return it will assume lower relative values further away from the excitation point.
While the global values of kinetic and potential energies in an infinite beam are practically the

same, their local values, i.e. the energy densities, are mutually very different though. This can be
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easily seen by inspecting the expression for flow divergence (Eq. (18)), the imaginary part of which
corresponds to the difference of kinetic and potential energy density according to Eq. (1).
At the excitation point, x ¼ 0, the energy flow divergence is at maximum. Expressed in terms of

input power via Eqs. (15) and (18a), it reads

force excitation : divðPÞ
��
x¼0
¼ �

Re Pin

� �
Zk

4ð1� Z=4Þ
1þ j

Z
2

� 
, (19a)

moment excitation : divðPÞ
��
x¼0
¼ �

Re Pin

� �
k

2ð1þ 3Z=4Þ
ðZ� jÞ. (19b)

For a given power input, the net divergence of energy flow provided by a moment is
approximately double of that provided by a force. This implies that around the driving point the
beam will absorb twice the vibration energy when driven by a moment rather than by a force at
the same injected power. The latter means that the potential energy in the moment excitation
neighbourhood is larger than in a force excited one. Yet the energy density at the excitation
position is practically the same whether the excitation is of force or moment type as it can be
found by using Eqs. (1) and (19a) and (19b):

force excitation : ēp ¼ ēk ¼
Re ðPÞin
� �

k

8oð1� Z=4Þ
;

moment excitation : ēp ¼
2Re ðPÞin

� �
k

8oð1þ 3Z=4Þ
; ēk � 0:

The characteristic value of energy density in beams can be found in an analogous way to that of
a rod. The approximate value of the distance from the excitation point D at which the net input
power entering one side of the beam drops to half its value follows from expð�ZkD=2Þ ¼ 1

2
,

i.e. kD ¼ 2 lnð2Þ=Z ((17a)). Half the global energy divided by twice this distance

ebeam ¼
Re Pin

� �
8 lnð2Þ

k

o
¼

Re Pin

� �
4 lnð2Þcg

(20)

can thus be considered as the characteristic energy density of a beam where cg—group velocity.
Thus both rod and beam have the same characteristic energy when expressed in terms of input
power and group velocity. Referring to Eq. (15) the characteristic energy density in a beam
vibrating in flexure is seen to decrease with frequency at a given level of force excitation but
remains independent of frequency at a given level of moment excitation.
Fig. 5 shows the normalised energy density, i.e. the energy density divided by the characteristic

density as a function of distance from the excitation point expressed in Helmholtz units. The loss
factor is 1%. Close to the excitation point the kinetic and potential energy densities differ a lot.
The total energy density, i.e. the sum of the two decreases at first rapidly with distance from the
driving point while the further decrease is much slower. Significant variations in kinetic and
potential energy stay limited to approx. half the wavelength. At distances larger than half the
wavelength both energies become practically the same, moreover for both types of excitation. It
can be further shown that changes in damping do not modify appreciably the energy density
distribution in the excitation area.
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Fig. 5 indicates that damping placement at the driving point will be much more efficient if the
excitation is by a moment rather than by a force. At approx. 0.17 wavelengths the potential energy
due to force excitation is at a minimum; the position of the minimum is approx. at 0.38
wavelengths in the case of a moment-driven beam. Placing some external damping at these
positions would consequently produce little effect on vibration reduction.

4.3. Semi-infinite beam

The present case will be now extended to the one of a semi-infinite beam excited near its end.
The beam end will be taken to be clamped. The response will be found by a superposition based
on the solution for an infinite beam (Eqs. (9) and (14)). The clamped end is located at x ¼ 0 while
the excitation force acts at x ¼ d. First, a secondary force of magnitude and phase equal to the
primary force will be applied to the infinite beam at twice the excitation-boundary distance, i.e. at
x ¼ �d. This force, acting simultaneously with the primary excitation force, will cancel rotation at
x ¼ 0 owing to the symmetry of an infinite beam displacement field. The remaining lateral
displacement at x ¼ 0 will be suppressed by an additional normal force at x ¼ 0 which in turn will
not create any rotation at this point (Fig. 6). As a result, the superposed fields of the primary,
secondary and compensating forces acting on the infinite beam will create the same field at xX0 as
a single primary force acting on a semi-infinite beam clamped at x ¼ 0.
Similarly, the semi-infinite beam response excited by a moment can be found by superposing

to an infinite beam a secondary moment at x ¼ �d of the same magnitude and opposite phase as
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the primary moment, with the addition of a force at x ¼ 0 adjusted to block the lateral motion at
this point.
While the secondary excitation is exactly equal in magnitude to the primary one, the

compensation force will depend on the wavenumber, and thus on frequency. Using Eq. (14)
the condition of zero movement at x ¼ 0 can be transformed into the following expressions for the
compensation force Fc:

force excitation : Fc ¼ � ð1þ jÞ e�jkd � je�kd
� �

F ,

moment excitation : Fc ¼ ð1� jÞ e�jkd � e�kd
� �

kM. ð21Þ

With the compensating force defined, the vibration field can be readily computed by
superposition.
Each of the three excitations, primary, secondary and compensating, will create both

propagating and evanescent waves. In the region xXd all of the six waves from these three
excitations move in the same direction, thus adding to one single propagating and one single
evanescent wave. In the region between the excitation point and the boundary the waves
simultaneously move in opposite directions adding up to four resulting waves. As a consequence,
in xod all 10 terms of Eqs. (B.3)–(B.6) have to be used in the expressions for energy flow and its
divergence, in contrast to the region xXd where only 3 terms do not vanish.
Fig. 7 presents the global beam properties in dependence of kd. The figure refers to the

normalised net input power but corresponds equally to the energy of the beam in view of Eq. (1a).
Both cases of excitation, i.e. by force (a) and by moment (b), are displayed for easier comparison.
The normalisation is made by dividing the actual values by the net input power of an infinite
beam.
The dips in the energy and power input exist at certain values of kd just like in the case of a

semi-infinite rod. These values are (n+1/4)p for force excitation and (n�1/4)p for moment
excitation, where n is an integer. It can be shown that these values represent the driving point anti-
resonances of a clamped–free beam excited at the free end: the first set of values corresponds to
linear motion under force excitation while the second set corresponds to angular motion under
moment excitation. These results follow the same reasoning discussed in Section 3 for the case of a
semi-infinite rod.
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Fig. 8 shows the position–frequency maps of normalised energy density in a semi-infinite beam
under force (a, b) and moment (c, d) excitation. Abscissa, ordinate and energy density values are
all normalised the same way as in Section 3. As expected, the energy density exhibits oscillations
between the excitation and end positions while globally decaying towards infinity.
Away from the excitation point in the direction of the beam extending to infinity no waves can

move in the negative direction, thus no energy density oscillations are possible. This does not
imply that the energy loss has to monotonically decrease: undulations are possible due to
interference between the propagating and decaying waves. Far away from the excitation the
decaying wave will effectively disappear and the energy loss will continue to decrease
monotonically in the exponential way.
The kinetic energy is smoothly distributed at each frequency and no particular significance

could be attributed to the excitation position. The potential energy exhibits a similar pattern away
from discontinuities, but close to discontinuities any similarity is lost.
Fig. 9 shows the distribution of input net power between the clamped and infinite sections in

dependence of damping. The values are represented in a relative way, as the ratio between the net
power entering the clamped section and the net total input power. As expected, the frequency
bands receiving the major part of the input power become wider as damping increases.
The jump in potential energy density at the excitation position produced by moment excitation

is clearly noticeable. As noted in Section 3 a jump will always appear when the beam is not
symmetrical about the excitation position. The local potential energy, proportional to the squared
modulus of the internal bending moment, will exhibit a jump if the internal moments at the
excitation point acting on the left- and right-hand sides of the beam are not equal in magnitude. If
the beam is symmetrical, although the moment jump at the excitation point does exist, the internal
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moments are of identical magnitude (equal to one half the excitation moment magnitude) thus
producing no jump in the potential energy and consequently no jump in internal energy loss.
A force-driven beam cannot experience any moment jump at the excitation point, no matter

whether the beam is symmetrical or not. Thus force excitation will never result in a discontinuity
of energy loss across the excitation point.
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Fig. 10 shows the jump in potential energy density across the driving point of a semi-infinite
moment-driven beam at different values of governing Helmholtz number. The actual value of the
jump is divided by the mean value of potential energy at the driving point, taken as half the sum of
the densities at the two points neighbouring the excitation point. The variations in damping are
shown as shades of grey, ranging from black (zero loss factor) to light grey (loss factor 10%). The
damping does not affect qualitatively the jump which just slowly shrinks as the damping increases.
It can be concluded that, given the same input power to a beam, the vibration due to moment

excitation can be more efficiently suppressed than that due to force excitation by placing damping
close to the excitation point.

4.4. Comparison of semi-infinite and finite beam energies

At this point it becomes useful to make a comparison between the global energy characteristics
of a semi-infinite and an equivalent finite beam. Such a comparison can be meaningful if the finite
beam is sufficiently long to let the vibration waves pass through several wavelengths before
reaching the opposite end of the beam. For the sake of completeness the analysis will be
nevertheless carried out from zero frequency. The energies of two beams will be different at each
given single frequency as the finite beam has to go through resonant peaks and troughs contrary
to the semi-infinite beam. Still, the global frequency behaviour of the two types of beams can be
expected to match.
Skudrzyk has found that the geometric mean of the driving point mobility of a finite vibratory

system corresponds to that of an equivalent infinite system [33]. It is worthwhile examining
whether the same applies to the system energies. This will be done via an example, that of a beam
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of the same material, cross-section and damping as analysed in Section 4. Three cases will be
studied: an infinite beam, a semi-infinite clamped beam driven at 1m from its clamped end and
finally a 10m long finite clamped–free beam driven in the identical way as the semi-infinite one.
The response of the finite beam will be computed using a closed solution for the beam as described
in Ref. [27].
Fig. 11 shows the global energy of the three beams in dependence of frequency. The abscissa

axes are presented in a square root frequency scale, i.e. in a linear wavenumber scale, to match the
resonance density of the finite beam. Plot (a) corresponds to unit force excitation, the other one to
unit moment excitation. It can be clearly seen that the energy of the semi-infinite beam is indeed
equal to the geometric mean of the finite beam energy. The energy of the infinite beam is however
very different from that of the semi-infinite beam, especially at lower frequencies.
The energy of the beam was then averaged in frequency bands. The band limits were chosen in

such a way as to accommodate five resonances in each band. The eigenvalues of a cantilever of
length L are given by kL � ðn� 1=2Þp, n ¼ 1; 2; 3 . . ., thus the band limits were set at the
wavenumbers kn ¼ qnp=L, n ¼ 0; 1; 2; . . ., to fit midway between two adjacent resonances where
q is the number of resonances per band, i.e. 5. The band limits are marked on Fig. 11 by dotted
lines. Fig. 12 shows the band-averaged values of beam energy computed by taking the energy
shown in Fig. 11 as a spectral density. It can be seen that the semi-infinite beam remarkably well
represents the finite beam in the averaged energy sense. The differences in the averaged energy of
the finite and infinite beam are not negligible though. The discrepancy is maximum at the lowest
band, especially in the force-driven case (graph (a)). The discrepancy comes from the boundary
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condition of the finite beam which makes its energy converge to a small value of static potential
energy as the frequency falls towards zero, while the energy of the infinite beam becomes infinite
in this case (Eq. (16)). But, the discrepancies between these two cases exist at high frequencies
too which implies that the infinite beam is not a good representative of a finite beam in the
energy sense.
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(a) unit force excitation and (b) unit moment excitation. Band limits are marked by dotted lines on Fig. 11.
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The energy shown on Figs. 11 and 12 is the total beam energy. The next question is how the
kinetic and potential energies of the three beams analysed match in a frequency-averaged sense.
This will be examined by comparing the Lagrangian coefficients of these beams. The Lagrangian
coefficient is presented on Fig. 13. Again the semi-infinite beam is seen to well represent the finite
one. The Lagrangian coefficient of an infinite beam can be easily deduced from Eq. (16). It is
constant, equal to Z/2 in the case of force excitation and �Z/2 in the case of moment excitation.
The Lagrangian energy of a finite or semi-infinite beam is thus quite different than that of an
infinite beam.
Fig. 14 shows the band-averaged Lagrangian coefficient. The frequency averaging was applied

to kinetic and potential energies first, and then the Lagrangian coefficient was calculated from the
averaged data. Once again the matching between the finite and semi-infinite beam is seen to be
very good. The matching with the infinite beam is poor as could have been expected.
It can be concluded that the energy of a long finite beam can be modelled in a frequency-

averaged sense by that of an equivalent semi-infinite beam. On the contrary, an infinite beam is
not a good representative of a finite beam where energy concepts are concerned.
5. Conclusions

Some generic features of energy and energy flow in thin rods and beams have been investigated.
The equations of energy density and energy flow are formulated in terms of wave amplitudes.
These equations are exact up to the validity of thin rod and Euler–Bernoulli beam models and up
to the assumption of low damping (loss factor squared much smaller than unity). The differential
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equations for energy and energy flow have been formulated in terms of interfering vibration
waves. Some discrepancies with an earlier model have been found.
It has been shown that, contrary to kinetic energy density, the potential energy density exhibits

a jump at the excitation point of a rod or a moment-driven beam. This feature can be employed
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when optimising the placement of damping treatments. Increased attention has been paid to
energy features of semi-infinite rods and beams, in particular to the distribution of kinetic and
potential energies within the end section, i.e. the section between the excitation and the end
positions. The damping was shown to reduce the jump in potential energy across the excitation
point, but in turn increases the frequency range of strong power input to the end section.
Finally, a comparison was made of the energy properties of a long finite beam and equivalent

semi-infinite and infinite beams. The semi-infinite beam was found to match very well the
frequency-averaged energy of the finite beam. On the contrary, the infinite beam shows poor
energy matching.
Appendix A. Energy and energy flow in an axially vibrating rod

To account for the damping the elasticity modulus E and thus the wavenumber k are taken
complex, [30]

E! Eð1þ jZÞ ‘ k ¼ o=c! k
. ffiffiffiffiffiffiffiffiffiffiffiffi

1þ jZ
p

� kð1� jZ=2Þ, (A.1)

where the right-hand approximation holds for low damping Z51.
The kinetic and potential energy densities of an axially vibrating rod are simple functions of the

axial displacement u. As these quantities are constant across the rod thickness, it is appropriate to
use the notion of energy per unit length, i.e. the energy density multiplied by the cross-sectional
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area S. Upon inserting complex k in Eq. (2), the kinetic and potential unit energies are readily
computed.
The time-averaged unit-length kinetic energy equals (prime denotes a unit-length quantity)

E0k ¼
1

2
m0 _u2¼̂

1

4
m0o2 U2

�� �� ¼ 1

4
m0o2 A2

þ

�� ��e�Zkx
�

þ A2
�

�� ��eZkx þ 2 Aþ
�� �� A�j j cosðjþ � j� � 2kxÞ

�
, ðA:2Þ

m0 being the unit-length mass of the rod. The mean potential energy density is equal to half the
averaged product of axial stress sx and axial strain ex. The strain–stress–displacement relationship
for a rod is a particularly simple one, �x ¼ qu=qx; sx ¼ E�x, yielding the following expression for
the unit-length potential energy of a damped rod:

E0p ¼
1

2
Ssx�x¼̂

1

4
S ReðEÞ

qU

qx

����
����
2

¼
1

4
m0o2 A2

þ

�� ��e�Zkx þ A2
�

�� ��eZkx � 2 Aþ
�� �� A�j j cosðjþ � j� � 2kxÞ

� �
. ðA:3Þ

In Eq. (6b) as well as in the expressions to follow the Z2 terms are neglected in comparison with 1.
The total mean energy density reads

E0 ¼ E0k þ E0p ¼
1

2
m0o2 A2

þ

�� ��e�Zkx þ A2
�

�� ��eZkx
� �

. (A.4)

The mean energy density, just like the net intensity, is interference-free, i.e. equals the sum of
the energies of two waves taken individually. The energy of each of the two decreases
exponentially in the direction of wave travel. While the kinetic and potential energies vary
considerably along the rod, due to the contribution of the last term in Eqs. (A.2) and (A.3), the
total energy varies slowly.
The mean axial intensity equals the negative product between the axial stress and particle

velocity. By multiplying the intensity by the cross-sectional area the energy flow P is obtained.
Expressed in complex form, the time-averaged energy flow becomes equal to

P ¼ � Ssx _u ¼ �
1

2
SE

qU

qx
ðjoUÞ�

¼
1

2
m0co2ð1þ jZ=2Þ A2

þ

�� ��e�Zkx � A2
�

�� ��eZkx þ 2j Aþ
�� �� A�j j sinðjþ � j� � 2kxÞ

� �
. ðA:5Þ

The real part of energy flow, the net flow, varies slowly along the rod:

ReðPÞ ¼
1

2
m0co2 A2

þ

�� ��e�Zkx � A2
�

�� ��eZkx � Z Aþ
�� �� A�j j sinðjþ � j� � 2kxÞ

� �
. (A.6)

By setting damping to zero, Eq. (4) is obtained. In this case the flow is constant.
The imaginary part of complex energy flow reads

ImðPÞ ¼ �
1

2
m0co2 Z

2
A2
þ

�� ��e�Zkx � A2
�

�� ��eZkx
� �

þ Aþ
�� �� A�j j sinðjþ � j� � 2kxÞ

h i
. (A.7)
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At zero damping the imaginary part varies spatially in a sinusoidal fashion around zero mean
value.
The flow divergence can be easily evaluated from Eq. (A.5) as qP=qx:

rðPÞ ¼ �
1

2
m0o3ð1þ jZ=2Þ Z A2

þ

�� ��e�Zkx þ A2
�

�� ��eZkx
� ��

þ 4j Aþ
�� �� A�j j cosðjþ � j� � 2kxÞ

�
. ðA:8Þ

Its real part

Re rðPÞ
� �

¼ �
1

2
m0o3Z A2

þ

�� ��e�Zkx þ A2
�

�� ��eZkx
�

� 2 Aþ
�� �� A�j j cosðjþ � j� � 2kxÞ

�
. ðA:9Þ

representing the energy loss per unit length contains Z as a common factor. It is easy to prove that
the term in brackets of Eq. (A.9) can never be negative, thus the divergence is always negative
indicating loss of energy at all positions vibrating freely according to Eq. (2).
By comparing Eq. (A.8) with Eqs. (A.2) and (A.3) the validity of Eq. (1) is confirmed. It is

worth noting that Eqs. (A.2)–(A.8) were derived from the solution of the wave equation, while
Eq. (1) was derived from the consideration of an elementary volume of a solid body.
Appendix B. Energy and energy flow in a beam vibrating in flexure

The instantaneous potential and kinetic energies per unit length of a beam vibrating in flexure
read

E0k ¼
1

2
m0 _u2; E0p ¼

1

2
B

q2u
qx2

����
����
2

. (B.1)

The energy flow in a beam vibrating in flexure is created by the internal work of the shear force Q
and the bending moment M. Its instantaneous value is

P ¼ Q _uþM
q _u
qx
¼ B

q3u
qx3

_u�
q2u
qx2

q _u
qx

� �
. (B.2)

Assuming lossless material, i.e. real flexural stiffness B, the formula above applied to the wave
solution (9) yields a simple expression for net power (Eq. (10)). By admitting damping through
complex stiffness B and thus k, an equivalent formula can be established for the complex power
using Eqs. (9), (11) and (B.2)

P ¼
m0o3

k
ð1þ jZ=2ÞðSr þ jSiÞ. (B.3)
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G. Pavić / Journal of Sound and Vibration 291 (2006) 932–962960
Here Sr and Si are real-valued functions depending on different combinations of amplitude
products:

Sr ¼ A2
þ

�� ��e�Zkx=2 � A2
�

�� ��eZkx=2 � 2 Cþ
�� �� C�j j sinðcþ � c� þ Zkx=2Þ

þ Z=4 C2
þ

�� ��e�2kx � C2
�

�� ��e2kx þ 2 Aþ
�� �� A�j j sinðjþ � j� � 2kxÞ

� �
,

Si ¼
ffiffiffi
2
p
ð1� Z=4Þ Aþ

�� �� Cþ
�� ��e�kð1þZ=4Þx cos½jþ � cþ � kð1þ Z=4Þx� p=4�

�
ffiffiffi
2
p
ð1þ Z=4Þ Aþ

�� �� C�j je
kð1�Z=4Þx cos½jþ � c� � kð1� Z=4Þxþ p=4�

þ
ffiffiffi
2
p
ð1þ Z=4Þ A�j j Cþ

�� ��e�kð1�Z=4Þx cos½j� � cþ þ kð1� Z=4Þxþ p=4�

�
ffiffiffi
2
p
ð1� Z=4Þ A�j j C�j je

kð1þZ=4Þx cos½j� � c� þ kð1þ Z=4Þx� p=4�. ðB:3aÞ

It should be recalled that C+ and C� represent the amplitudes of evanescent waves at the
same position, i.e. x ¼ 0 (Eq. (9)). The evanescent waves have maximum amplitudes at
the beam ends from which the waves decay. These amplitudes are usually of the same order of
magnitude as the amplitudes of the propagating waves, or smaller. Thus, the product of C+ and
C� will be negligible at all but very low frequencies where the length of the beam is shorter than
the vibration wavelength. For the same reason the terms containing |C+| and |C�| will be
negligible at positions away from the beam ends. Close to one of the two ends only one of these
terms can be important.
By examining Eq. (B.3) and taking the last comments into account it can be easily concluded

that the real part of energy flow will be dominated by the Sr factor which can be further simplified
for use at mid- and high-frequencies by suppressing its evanescent terms:

Re P
� �
�

m0o3

k
Sr, (B.3b)

Sr � A2
þ

�� ��e�Zkx=2 � A2
�

�� ��eZkx=2 þ Z=2 Aþ
�� �� A�j j sinðjþ � j� � 2kxÞ. (B.3c)

Eq. (B.3) further shows that the imaginary part of energy flow will be contributed substantially
not only by the Sr factor but by the Si factor as well. The coupling between the propagating and
evanescent waves thus is not negligible in this case.
The energy flow divergence is then obtained as (Z2 terms neglected in comparison with unity)

r � P ¼ qP=qx ¼ �m0o3ð1þ jZ=2ÞðGr þ jGiÞ, (B.4)

Gr ¼ Z=2 A2
þ

�� ��e�Zkx=2 þ A2
�

�� ��eZkx=2 þ C2
þ

�� ��e�2kx þ C2
�

�� ��e2kx
h

þ2 Aþ
�� �� A�j j cosðjþ � j� � 2kxÞ þ 2 Cþ

�� �� C�j j cosðcþ � c� þ Zkx=2Þ
�
,

Gi ¼ 2 Aþ
�� �� Cþ

�� ��e�kð1þZ=4Þx cos½jþ � cþ � kð1þ Z=4Þx�

þ 2 Aþ
�� �� C�j je

kð1�Z=4Þx cos½jþ � c� � kð1� Z=4Þx�

þ 2 A�j j Cþ
�� ��e�kð1�Z=4Þx cos½j� � cþ þ kð1� Z=4Þx�

þ 2 A�j j C�j je
kð1þZ=4Þx cos½j� � c� þ kð1þ Z=4Þx�. ðB:4aÞ
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Omitting the proof for the sake of brevity, the fundamental relationship between energy and
energy flow, given by Eq. (1), can be shown to fully apply in this case

Reðr � PÞ ¼ � 2oZE0p ) E0p ¼
m0o2

2

Gr

Z
�

Gi

2


 �
,

Imðr � PÞ ¼ � 2oðE0k � E0pÞ ) E0k ffi
m0o2

2

Gr

Z
þ

Gi

2


 �
. ðB:5Þ

In the last expression Z2 has been again neglected in comparison with unity.
The total energy density of the flexurally vibrating beam thus equals

E0 ¼ E0p þ E0k ¼
m0o2

Z
Gr. (B.6)

It can be seen that the coupling between the propagating and evanescent waves, contained in the
Gi factor, does not affect the total energy density. This factor does, however, appear in the explicit
expressions for kinetic and potential energies (Eq. (B.5)), but with opposite sign thus cancelling
itself from the sum of the two.
Eq. (B.7) indicates that the Gi factor governs the difference of kinetic and potential energy

densities, i.e. the Lagrangian energy density:

L0 ¼ E0k � E0p ffi
m0o2

2
Gi. (B.7)

Thus, the difference of kinetic and potential energy densities in a beam comes mainly for the
interference between the propagating and evanescent waves. It follows that this difference will
increase near the ends and excitation zones and will disappear in the interior free zones.
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